Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science & Medicine, 48(11), 1507–1515. https://doi.org/10.1016/S0277-9536(99)00045-3.
Article
CAS
Google Scholar
Rapkin, B. D., & Schwartz, C. E. (2004). Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes, 2(1), 14. https://doi.org/10.1186/1477-7525-2-14.
Article
PubMed
PubMed Central
Google Scholar
Rapkin, B. D., & Schwartz, C. E. (2019). Advancing quality-of-life research by deepening our understanding of response shift: A unifying theory of appraisal. Quality of Life Research, 28(10), 2623–2630. https://doi.org/10.1007/s11136-019-02248-z.
Article
PubMed
Google Scholar
Schwartz, C. E., & Sprangers, M. A. G. (1999). Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research. Social Science & Medicine, 48(11), 1531–1548. https://doi.org/10.1016/S0277-9536(99)00047-7.
Article
CAS
Google Scholar
Oort, F. J. (2005). Using structural equation modeling to detect response shifts and true change. Quality of Life Research, 14(3), 587–598. https://doi.org/10.1007/s11136-004-0830-y.
Article
PubMed
Google Scholar
Mayo, N., Scott, C., & Ahmed, S. (2009). Case management post-stroke did not induce response shift: The value of residuals. Journal of Clinical Epidemiology, 62, 1148–1156.
Article
Google Scholar
Li, Y., & Rapkin, B. D. (2009). Classification and regression tree analysis to identify complex cognitive paths underlying quality of life response shifts: A study of individuals living with HIV/AIDS. Journal of Clinical Epidemiology, 62(11), 1138–1147. https://doi.org/10.1016/j.jclinepi.2009.03.021.
Article
PubMed
PubMed Central
Google Scholar
Lix, L. M., Sajobi, T. T., Sawatzky, R., Liu, J., Mayo, N. E., Huang, Y., … Bernstein, C. N. (2013). Relative importance measures for reprioritization response shift. Quality of Life Research, 22(4), 695–703. https://doi.org/10.1007/s11136-012-0198-3.
Article
PubMed
Google Scholar
Boucekine, M., Loundou, A., Baumstarck, K., Minaya-Flores, P., Pelletier, J., Ghattas, B., & Auquier, P. (2013). Using the random forest method to detect a response shift in the quality of life of multiple sclerosis patients: A cohort study. BMC Medical Research Methodology, 13(1), 20. https://doi.org/10.1186/1471-2288-13-20.
Article
PubMed
PubMed Central
Google Scholar
Sawatzky, R., Gadermann, A. M., Ratner, P. A., Zumbo, B., & Lix, L. (2012). Identifying individuals with inflammatory bowel disease who experienced response shift: A latent class analysis. Quality of Life Research, 21, 33.
Article
Google Scholar
Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Schwartz, C. E., … Sébille, V. (2015). Response shift algorithm in item response theory (ROSALI) for response shift detection with missing data in patient-reported outcomes in longitudinal clinical trials. Quality of Life Research, 24(3), 553–564. https://doi.org/10.1007/s11136-014-0876-4.
Article
PubMed
Google Scholar
Ring, L., Hofer, S., Heuston, F., Harris, D., & O'Boyle, C. A. (2005). Response shift masks the treatment impact on patient reported outcomes: The example of individual quality of life in edentulous patients. Health and Quality of Life Outcomes, 3(1), 55. https://doi.org/10.1186/1477-7525-3-55.
Article
PubMed
PubMed Central
Google Scholar
Ruta, D. A., Garratt, A. M., Leng, M., Russell, I. T., & MacDonald, L. M. (1994). A new approach to the measurement of quality of life. The Patient-Generated Index. Medical Care, 32(11), 1109–1126. https://doi.org/10.1097/00005650-199411000-00004.
Article
CAS
PubMed
Google Scholar
Schwartz, C. E., & Rapkin, B. D. (2004). Reconsidering the psychometrics of quality of life assessment in light of response shift and appraisal. Health and Quality of Life Outcomes, 2(1), 16. https://doi.org/10.1186/1477-7525-2-16.
Article
PubMed
PubMed Central
Google Scholar
Tourangeau, R., Rips, L. J., & Rasinski, K. (2000). The psychology of survey response. Cambridge University Press. https://doi.org/10.1017/CBO9780511819322.
Schwartz, C. E., Zhang, J., Stucky, B. D., Michael, W., & Rapkin, B. D. (2020). Does response shift impact interpretation of change even among scales developed using item response theory? Journal of Patient-Reported Outcomes, 4(8), 8. https://doi.org/10.1186/s41687-019-0162-x.
Article
PubMed
PubMed Central
Google Scholar
Schwartz, C. E., Quaranto, B. R., Rapkin, B. D., Healy, B. C., Vollmer, T., & Sprangers, M. A. G. (2014). Fluctuations in appraisal over time in the context of stable and non-stable health. Quality of Life Research, 23(1), 9–19. https://doi.org/10.1007/s11136-013-0471-0.
Article
PubMed
Google Scholar
Morganstern, B. A., Bernard, B., Dalbagni, G., Shabsigh, A., & Rapkin, B. D. (2011). The psychological context of quality of life: A psychometric analysis of a novel idiographic measure of bladder cancer patients’ personal goals and concerns prior to surgery. Health and Quality of Life Outcomes, 9(10), 10. https://doi.org/10.1186/1477-7525-9-10.
Article
PubMed
PubMed Central
Google Scholar
Schwartz, C. E., Zhang, J., Rapkin, B. D., & Finkelstein, J. A. (2019). Reconsidering the minimally important difference: Evidence of instability over time and across groups. The Spine Journal, 19(4), 726–734. https://doi.org/10.1016/j.spinee.2018.09.010.
Article
PubMed
Google Scholar
Rapkin, B. D., Garcia, I., Michael, W., Zhang, J., & Schwartz, C. E. (2016). Distinguishing appraisal and personality influences on quality of life in chronic illness: Introducing the Quality-of-Life Appraisal Profile version 2. Quality of Life Research, 26, 2815–2829.
Article
Google Scholar
Rapkin, B. D., Garcia, I., Michael, W., Zhang, J., & Schwartz, C. E. (2017). Development of a practical outcome measure to account for individual differences in quality-of-life appraisal: The Brief Appraisal Inventory. Quality of Life Research, 27(3), 823–833. https://doi.org/10.1007/s11136-017-1722-2.
Article
PubMed
Google Scholar
Rapkin, B. D., & Schwartz, C. E. (2016). Distilling the essence of appraisal: A mixed methods study of people with multiple sclerosis. Quality of Life Research, 25(4), 793–805. https://doi.org/10.1007/s11136-015-1119-z.
Article
PubMed
Google Scholar
Schwartz, C. E., Li, J., & Rapkin, B. D. (2016). Refining a web-based goal assessment interview: Item reduction based on reliability and predictive validity. Quality of Life Research, 25(9), 2201–2212. https://doi.org/10.1007/s11136-016-1258-x.
Article
PubMed
Google Scholar
Schwartz, C. E., Finkelstein, J. A., & Rapkin, B. D. (2017). Appraisal assessment in patient-reported outcome research: Methods for uncovering the personal context and meaning of quality of life. Quality of Life Research, 26(26), 545–554. https://doi.org/10.1007/s11136-016-1476-2.
Article
PubMed
Google Scholar
Schwartz, C. E., Stark, R. B., & Rapkin, B. D. (2020). Capturing patient experience: Does quality-of-life appraisal entail a new class of measurement? Journal of Patient-Reported Outcomes, 4, 1–11.
Article
Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155.
Article
CAS
PubMed
Google Scholar
Oort, F. J., Visser, M. R. M., & Sprangers, M. A. G. (2005). An application of structural equation modeling to detect response shifts and true change in quality of life data from cancer patients undergoing invasive surgery. Quality of Life Research, 14(3), 599–609. https://doi.org/10.1007/s11136-004-0831-x.
Article
PubMed
Google Scholar
Schwartz, C. E., Michael, W., & Rapkin, B. D. (2017). Resilience to health challenges is related to different ways of thinking: Mediators of quality of life in a heterogeneous rare-disease cohort. Quality of Life Research, 26(11), 3075–3088. https://doi.org/10.1007/s11136-017-1633-2.
Article
PubMed
Google Scholar
Centers for Disease Control and Prevention. Measuring Healthy Days. Atlanta: CDC; 2000.
Hays, R. D., Bjorner, J. B., Revicki, D. A., Spritzer, K. L., & Cella, D. (2009). Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Quality of Life Research, 18(7), 873–880. https://doi.org/10.1007/s11136-009-9496-9.
Article
PubMed
PubMed Central
Google Scholar
Hanmer, J., & Cherepanov, D. (2016). A single question about a respondent’s perceived financial ability to pay monthly bills explains more variance in health utility scores than absolute income and assets questions. Quality of Life Research, 25(9), 2233–2237. https://doi.org/10.1007/s11136-016-1269-7.
Article
PubMed
PubMed Central
Google Scholar
Sangha, O., Stucki, G., Liang, M. H., Fossel, A. H., & Katz, J. N. (2003). The self-administered comorbidity questionnaire: A new method to assess comorbidity for clinical and health services research. Arthritis Care & Research, 49(2), 156–163. https://doi.org/10.1002/art.10993.
Article
Google Scholar
US Region Map (2020). Source: https://yourfreetemplates.com/us-region-map-template. Accessed 20 Jan 2020.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates.
Allen, I. E., & Seaman, C. A. (2007). Likert scales and data analyses. Quality Progress, 40(7), 64–65.
Svensson, E. (2001). Guidelines to statistical evaluation of data from rating scales and questionnaires. Journal of Rehabilitation Medicine, 33(1), 47–48. https://doi.org/10.1080/165019701300006542.
Article
CAS
PubMed
Google Scholar
Harpe, S. E. (2015). How to analyze Likert and other rating scale data. Currents in Pharmacy Teaching & Learning, 7(6), 836–850. https://doi.org/10.1016/j.cptl.2015.08.001.
Article
Google Scholar
Hsu, T.-C., & Feldt, L. S. (1969). The effect of limitations on the number of criterion score values on the significance level of the F-test. American Educational Research Journal, 6(4), 515–527.
Google Scholar
Garson, G. D. (2012). Testing statistical assumptions. Statistical Associates Publishing.
IBM (2019). IBM SPSS statistics for windows, (26th ed., ). IBM Corp.
Core Team, R. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Schwartz, C. E., Powell, V. E., & Rapkin, B. D. (2017). When global rating of change contradicts observed change: Examining appraisal processes underlying paradoxical responses over time. Quality of Life Research, 26(4), 847–857. https://doi.org/10.1007/s11136-016-1414-3.